The Generalization Complexity Measure for Continuous Input Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalization Complexity Measure for Continuous Input Data

We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originally defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when using a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use with continuous ...

متن کامل

Extension of the Generalization Complexity Measure to Real Valued Input Data Sets

This paper studies the extension of the Generalization Complexity (GC) measure to real valued input problems. The GC measure, defined in Boolean space, was proposed as a simple tool to estimate the generalization ability that can be obtained when a data set is learnt by a neural network. Using two different discretization methods, the real valued inputs are transformed into binary values, from ...

متن کامل

An input-oriented radial measure for returns to scale aggregation.

In production theory, it is necessary to be capable of predicting the production func- tion’s long-run behaviors. Hereof, returns to scale is a helpful concept. Returns to scale describes the reaction of a production function to the proportionally scaling all its input variables. In this regard, Data envelopment analysis (DEA) provides a com- prehensive framework for returns to scale evaluation...

متن کامل

Generalization from Sparse Input

Over the past decade, there has been an increasing awareness of the extent to which the speaker/hearer's language knowledge reflects the fine details of personal experience. This awareness can be seen in theoretical linguistics (e. approaches that rely on large-scale electronic corpora). In a curious way this reflects a pendulum swing back to older views that predate the generative era. But it ...

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Scientific World Journal

سال: 2014

ISSN: 2356-6140,1537-744X

DOI: 10.1155/2014/815156